گاز کروماتوگرافی GC
گاز کروماتوگرافی GC
گاز کروماتوگرافی GC
از گاز کروماتوگرافی (GC) برای شناسایی و تعیین مقدار انجام می شود. در گاز کروماتوگرافی (GC) با دو فاز سر و کار داریم: فاز ساکن و فاز متحرک، فاز متحرک یک گاز است و فاز ساکن می تواند مایع یا جامد باشد. فاز متحرک هیچ نقشی در جداسازی ندارد و یکی از تفاوت های GC با HPLC همین موضوع است. در HPLC فاز متحرک یک مایع است که در جداسازی نقش دارد. تنها نقش فاز متحرک در GC حمل مواد به جلو و خارج کردن آنها از ستون است. به همین دلیل کیفیت جداسازی در HPLC بهتر است از GC.
ابتدا نمونه را توسط سرنگ داخل injector تزریق می کنیم. نمونه پس از ورود به injector به بخار تبدیل شده و با فاز متحرک مخلوط شده ، وارد ستون می شود. نمونه جذب ستون می شود و در زمانهای مختلف به وسیله گاز بی اثر از ستون بیرون می آید و وارد دتکتور می شود. ستون قلب دستگاه است زیرا عمل اصلی که جداسازی است در آنجا انجام می شود. دتکتور شناسایی را انجام می دهد جهت شناسایی مواد با GC از Rt) Retention time ) استفاده می شود. Retention time زمانی است که طول می کشد تا جسم از دتکتور بیرون بیاید ، یعنی از زمان تزریق نمونه تا زمان ظاهر شدن پیک ها روی دستگاه که برای یک ماده تحت شرایط ثابت، مقداری ثابت است. بنابراین از مقایسه Rt معلوم با Rt مجهول، می توان اجزای موجود در مجهول را تشخیص داد.
اگر مجهول و استاندارد، Rt یکسان داشتند، می توان نتیجه گرفت که هر دو نمونه یکی هستند.
پارامتر مهم دیگر در GC ، سطح زیر منحنی ( AUC ) است. رکوردر به ما کروماتوگرامی می دهد که در راس هر پیک Rt را می نویسد و AUC مربوط به آن را هم می دهد پس کروماتوگرام حاوی دو اطلاع ارزنده است:
- Rt برای شناسایی کیفی جسم
- AUC برای تعیین مقدار کمی جسم
مخزن گاز حامل
فاز متحرک یا گاز حامل تنها وظیفه انتقال نمونه از ستون را به عهده دارد. به طور کلی گاز حامل باید نسبت به نمونه و حلال بی اثر باشند، خلوص بالایی داشته و در دسترس باشد، ارزان بوده و مناسب آشکارساز مورد استفاده باشد.
هلیوم، آرگون، نیتروژن و هیدروژن (H2, N2 ،He) به عنوان گاز حامل به کار برده می شوند. گاز حامل باید خالص، بدون رطوبت و عاری از اکسیژن باشد. خلوص گاز حامل مهم ترین ویژگی آن است زیرا وجود ناخالصی در گاز حامل سبب ایجاد نویز (noise) شده و بر حساسیت تاثیر می گذارد و در نتیجه دقت کمی آنالیز را کاهش می دهد. He از همه بهتر است ولی چون گران است کاربرد کمی دارد. نگهداری H2 هم خطرناک است چون قابلیت انفجار دارد، بنابراین N2 استفاده می شود.
حضور ترکیباتی مانند آب و اکسیژن سبب مشکلاتی در آنالیز خواهد شد. حضور اکسیژن باعث اکسداسیون و تغییر حجم بازداری شده و در نتیجه تفکیک پذیری را کاهش می دهد و اگر فاز ساکن قطبی باشد به فاز ساکن صدمه وارد کند. آب به دلیل هیدروژناسیون می تواند هم به فاز ساکن و هم نمونه آسیب برساند.
نوع گاز حامل تاثیر زیادی در کارایی ستون و زمان آنالیز دارد. گاز حامل سبکی مانند هیدروژن با سرعت زیادی که دارد باعث کاهش کارایی ستون می شود و زمان آنالیز را کاهش می دهد، در عوض گاز حامل نیتروژن که سنگین تر است سبب افزایش کارایی ستون شده ولی زمان آنالیز را افزایش می دهد. در واقع در حجم بهینه و مناسب، نیتروژن بالاترین کارایی را دارد. گاز هلیم خطری ندارد و از راندمان آن در سرعت های بالا نیز کاسته نمی شود. هیدروژن به علت قابلیت انفجار و مشکلات نگهداری آن کمتر مورد توجه است.
اگرچه هلیوم گاز متداولی برای GC است ولی استفاده از آن به علت گران بودن قیمت، با محدودیت همراه است. در حجم بهینه و مناسب، نیتروژن بالاترین کارایی را دارد ولی در سرعت بالا از کارایی آن کاسته می شود. بنابراین برای آنالیز معمول، غالبا نیتروژن به عنوان گاز حامل به کار می رود.
گازی که به دستگاه و در نتیجه به ستون وارد می شود باید فشار و سرعت جریان مشخص و ثابتی داشته باشد. برای این منظور لوازم جانبی مانند کنترل کننده جریان، رگلاتور های فشار، روتامتر و غیره برای تنظیم و کنترل فشار و سرعت جریان گاز حامل استفاده می شود. روتامتر یک وسیله برای اندازه گیری دبی مایعات و گازها ست. فشار ورودی در دستگاه GC 10-50 psi بالاتر از فشار اتاق است. سرعت جریان گاز حامل برای برای ستون های پرشده ۲۵-۱۵۰ میلی لیتر بر دقیقه و برای ستون های مویین ۰٫۱-۲۵ میلی لیتر بر دقیقه است. میزان سرعت جریان گاز حامل به قطر ستون و نوع گاز بستگی دارد.
اجزاء و قسمت های مختلف دستگاه GC
سلیندر: حاوی گاز حامل، در بیشتر دستگاه ها از گاز ازت که گازی خنثی، ارزان و در دسترس است استفاده می شود.
فلومتر: توسط این قسمت از دستگاه تنظیم فشار گاز حامل صورت می گیرد که اگر نمونه سریعتر بیرون بیاید ممکن است دو پیک روی هم بیفتند. هر چه فلو بیشتر باشد، مواد سریعتر از ستون خارج می شوند. . فلو برحسب ml/min است. (در کار با GC باید نوع گاز حامل و flue آن ذکر شود).
محل تزریق نمونه (injector):
نمونه های مورد آنالیز توسط سیستم تزریق نمونه یا انژکتور (Injector) به ستون وارد می شوند. نمونه پس از ورود به injector به بخار تبدیل شده، با فاز متحرک مخلوط شده و سپس برای جداسازی وارد ستون می شود. برای دست یابی به کارایی بالای ستون، نمونه باید در اندازه مناسب و به صورت توده ای (plug) از بخار، وارد ستون شود. تزرق آرام و اندازه نامناسب نمونه باعث پخش شدن آن در ستون و جداسازی ضعیف می شود.
تزریق می تواند به صورت دستی با سرنگ های مخصوص انجام شود یا به صورت اتوماتیک. تمامی دستگاه های مدرن امروزی دارای سیستم تزریق اتوماتیک نمونه (auto sampler) هستند. ستون های مویی گنجایش خیلی کمی برای نمونه دارند و تزریق بیش از ظرفیت ستون سبب سرریز شدن (over loading) می شود بنابراین روش های تزریق مختلفی دارند.
تزریق نمونه های گازی بیشتر از طریق شیر (valve) با نام اختصاصی (gas sampling valve, GSV) انجام می شود. این شیرها معمولا یک حلقه نمونه (sample loop) دارند که به نسبت حجمی که باید تزریق گردد، می توانند اندازه های مختلفی داشته باشند.
در ستون های مویی مقدار کم نمونه لازم است و بعضی مواقع این مقدار نمونه آنقدر کم است که میکرو سرنگ های معمول قادر به تزریق آن مقادیر نخواهد بود. در این حالت از سیستم تقسیم کننده نمونه (split injector) استفاده می شود که فقط بخش کوچکی از نمونه تزریق شده وارد ستون شود. سرعت جریان و دمای تزریق از موارد مهم در سیستم های تزریقی است.
ستون (column):
ستون مهم ترین قسمت دستگاه های کروماتوگرافی ست که نقش اصلی جداسازی را بر عهده دارد. به طور کلی در GC دو نوع ستون به کار می رود. ستون های پرشده یا فشرده (packed column) و ستون های مویی (capillary column).
ستون های پرشده اولین نوع ستون های مورد استفاده بوده و از جنس لوله های فلزی یا شیشه ای هستند که با ذرات جامد کاملا پر می شوند. ستون های از جنس فولاد بسیار مقاوم هستند ولی باید توسط کارخانه سازنده پر شوند. ستون های مسی انعطاف پذیر بوده، به راحتی پر می شوند و به شکل مارپیچ درآیند ولی به علت تشکیل اکسید مس در جداره ستون امکان کاتالیز برخی واکنش ها وجود دارد. ستون های شیشه ای اگرچه شکننده هستند ولی به علت شفاف بودن، تشخیص حباب های هوا در ستون امکان پذیر است. ستون های پرشده معمولا بین ۲ تا ۳ متر طول و ۲-۴ میلی متر قطر داخلی هستند. ماده پرکننده باید ذرات کروی یکنواخت با قدرت مکانیکی خوب، سطح ویژه مناسب و بی اثر در دماهای بالا باشد.
ستون های مویی به شکل لوله های باز از جنس شیشه های کوارتزی یا فلزی هستند که فاز ساکن به صورت یک لایه فیلم نازک روی دیواره داخلی ستون قرار گرفته است. این ستون ها به دو دسته کلی تقسیم می شوند:
- لوله ای باز دیوار اندود (Wall coated open tubular, WCOT): سطح داخلی ستون با لایه بسیار نازکی از فاز ساکن پوشانده شده است. از متداول ترین نوع WCOT ستون های لوله باز سیلیس جوش خورده (Fused silica open tubular, FSOT) است که از سیلیس حاوی مقادیر کم اکسدهای فلزی ساخته شده و با پوشش پلی ایمیدی کاملا انعطاف پذیر بوده و می توان آنها را به صورت مارپیچ یا حلقه در آورد.
- لوله ای باز تکیه گاه اندود (Support coated open tubular, SCOT): در این نوع ستون سطح درونی لوله بالایه نازکی از مواد نگهدارنده مانند خاک دیاتومه (به ضخامت تقریبی ۳۰ میکرومتر) پوشانده می شود و سپس فاز ساکن بر روی آن قرار داده می شود. ستون های SCOT ظرفیت پذیرش مقدار بیشتری از نمونه را دارد زیرا به دلیل ضخامت فاز ساکن دیرتر از ستون های WCOT اشباع می شوند.
طول ستون های مویی از ۱۵ تا ۵۰ متر و قطر داخلی آنها از ۰٫۱۵ تا ۰٫۵۵ میکرومتر متغیر است.
انتخاب ماده مناسب به عنوان فاز ساکن برای یک جداسازی خوب و کارایی مناسب بسیار با اهمیت است. فاز ساکن باید از نظر شیمیایی بی اثر بوده و پایداری حرارتی خوبی داشته باشد. برای فازهای ساکن مایع باید فراریت کمی نیز داشته باشند به طوری که نقطه جوش مایع حداقل ۱۰۰ درجه سانتی گراد بالاتر از ماکزیمم دمای عملی ستون باشد. متداول ترین فازهای ساکن مورد استفاده برای ستون های پرشده از خاک طبیعی یا دیاتومه تهیه می شوند. فازهای ساکن متداول معمولا از جنس پلی سیلوکسان ها یا پلی اتیلن گلیکول هستند که پایداری حرارتی تا ۳۵۰ درجه سانتی گراد را دارند. فازهای ساکن بر حسب پیوند شیمیایی به دو دسته کلی قطبی و غیر قطبی تقسیم می شوند.
دمای ستون پارامتر بسیار با اهمیتی ست که باید با دقت چند دهم سانتی گراد برای کارهای دقیق کنترل شود. بنابراین ستون باید در یک سیستم پایش دما یا آون قرار داده شود. دمای ستون باید چند درجه بالاتر از نقطه جوش دیر جوش ترین جزء موجود در نمونه باشد. کنترل دمایی به دو صورت ایزوترمال (isothermal) یا تک دما و گرادیانی یا برنامه ریزی شده (programming) انجام می شود.
روش Isothermal : در این روش با یک دمای ثابت کار می کنیم ، بیشتر زمانی استفاده می شود که در نمونه فقط یک ماده مورد شناسایی وجود دارد یا اگر چند ماده وجود دارد، نقطه جوش آنها نزدیک به هم است.
روش برنامه ریزی دمایی (programming): در مواقعی استفاده می شود که مواد موجود در نمونه Range وسیعی از نقطه جوش دارند و اگر ابتدا دمای Oven را بالاتر از نقطه جوش دیر جوش ترین ماده قرار دهیم ، مواد با نقطه جوش کمتر تجزیه خواهد شد و نمی توان آنها را شناسایی کرد. بنابراین طوری دما را تنظیم می کنیم که با سرعت مشخصی از چند درجه بالاتر ازمواد به ترتیب نقطه جوش از ستون بیرون می آیند یعنی هر چه تعداد کربن های ماده بیشتر باشد دیرتر بیرون می آیند و پیک آنها دیرتر ظاهر می شود. وقتی نمونه ای حاوی چند جزء با طیف وسیع BP است نمی توان از روش ایزوترمال استفاده کرد زیرا با داشتن فقط یک دما ، ممکن است یک جزء خیلی سریع بیرون بیاید و از دست برود یا بیرون آمدن آن ، زمان طولانی ببرد. بنابراین باید از روش Programming استفاده کنیم ، یعنی از چند Oven استفاده کرده و به هر یک ، دمایی خاص می دهیم.
آشکارساز (Detector) :
دتکتور بر اساس پاسخی که می دهد به دو دسته تقسیم می شود :
دتکتور انتگرالی، که پاسخ انتگرالی می دهد. که امروزه منسوخ شده است.
دتکتور تفکیکی، پاسخ این دتکتور به این صورت است که وقتی گاز حامل به تنهایی می آید، خط صاف و وقتی به همراه نمونه می آید یک پیک می دهد.
یکی از دتکتورهای تفکیکی که در GC استفاده می شود (Flame Ionization Detector (FID می باشد. نمونه ها بعد از اینکه از ستون خارج می شوند وارد دتکتور می شوند. نمونه ها در شعله دتکتور می سوزند و ایجاد یون و الکترون می کنند. آنچه مهم است الکترون هایی است که تولید می شوند. الکترونها جریانی را که از FID عبور می کند افزایش می دهند و غلظت نمونه متناسب با افزایش میزان جریان است.
برای تشکیل شعله از سوخت هیدروژن با اکسیژن هوا استفاده می شود. برای تامین اکسیژن هم از کپسول هوا استفاده می شود.
نشانه روشن بودن دستگاه دتکتور این است که بخار آب از آن خارج شود. FID حساسیت بالایی دارد و عیب آن تخریب نمونه است. (نوع دتکتور هم باید در کار تحقیقاتی ذکر شود).
شناسایی تمامی اجزاء شیمیایی نمونه ای که به ستون تزریق شده و یا یک گروه یا جزء ویژه از نمونه، وظیفه اصلی آشکارساز در GC است. در واقع آشکارساز با حضور اجزاء موجود در گاز حاملی که به آشکارساز می رسد، پاسخ الکتریکی می دهد. اگر آشکارسازی بتواند به تمام انواع نمونه های موجود پاسخ قوی دهد یک آشکارساز عمومی (universal) و اگر فقط به گروه یا ترکیبات ویژه ای واکنش نشان دهد، یک آشکارساز انتخابی ست.
یک آشکارساز ایده آل در GC باید حساسیت مناسب داشته، پایدار باشد، و از دقت، صحت و تکرارپذیری مناسبی برخوردار باشد. ضمنا باید زمان پاسخ مناسبی داشته باشد که با سرعت عبور اجزا با گاز حامل از آشکارساز بتواند واکنش نشان دهد. حد تشخیص (detection limit) و گستره خطی (linearity range) آشکارساز برای آنالیزهای کمی بسیار اهمیت دارد. جدول ۱ انواع آشکارسازهای متداول در GC همراع با توصیفی از زمینه کاربرد هر کدام را ارائه کرده است.
آشکارساز |
اختصار |
توصیف |
آشکارساز یونش شعله ای |
(FID (Flame Ionization Detector |
|
آشکارساز گرما رسانندگی |
(TCD (thermal conductivity detector |
برای کلیه ترکیبات آلی و معدنی |
آشکارساز الکترون گیراندازی |
(ECD (Electron capture detector |
|
آشکارساز گرمای یونی |
(TID (thermoionic detector |
برای آنالیز ترکیبات حاوی فسفر و نیتروژن |
آشکارساز نشر اتمی |
(AED (Atomic emission detector |
کلیه عناصری که شدت نشر مناسبی در شعله با پلاسما دارند |
آشکارساز فوتو یونشی |
(PID (Photoionization detector |
|
آشکار ساز طیف سنجی زیر قرمز فوریه |
FT-IR |
همه ترکیباتی که جذب IR دارند |
آشکارساز طیف سنجی جرمی |
(GC/MS (Mass Spectrometry |
|
آشکارساز یونش شعله ای (Flame ionization detector, FID)
آشکارساز یونش شعله ای یا FID متداول ترین آشکارساز مورد استفاده در GC است که از یک شعله هوا/هیدروژن برای پیرولیز ترکیبات آلی و یک جمع کننده (collector) برای جمع آوری یون ها و الکترون های تولید شده از فرایند پیرولیز تشکیل شده است. جریان الکتریکی حاصل از یونیزه شدن اتم های کربن با یک امپلی فایر تقویت می شود. پاسخ آشکارساز به نسبت هوا / هیدروژن و گاز حامل وابسته است. حساسیت و گستره خطی بالا، نویز پایین و سهولت استفاده از مزایای این آشکارساز است.
ترکیبات آلی حاوی گروه های عاملی مانند کربونیل، الکل، هالوژن و آمین، یون های بسیار کمی تولید می کنند و یا اصلا تولید نمی کنند. و هم چنین به گازهای احتراق ناپذیرشامل SO2, NOx ،CO2 وH2O حساس نیست و برای ترکیبات غیرآلی نیز پاسخی ندارد. چون این آشکارساز به آب و اکسیدهای نیتروژن و گوگرد حساس نیست تجزیه نمونه های آلی شامل این ترکیبات بسیار مفید است.
آشکارساز گرما رسانندگی (Thermal Conductivity Detector, TCD)
آشکارساز گرما رسانندگی یا TCD یک آشکارساز عمومی ست که برای شناسایی هم ترکیبات آلی و هم معدنی به کار می رود. اساس آن تغییرپذیری هدایت گرمایی یک گاز است که به وسیله تغییر مقاومت فلزی واقع در یک محفظه گرمایش سنجیده می شود.
این آشکار ساز دارای دو محفظه گرمایشی کاملا مشابه هستند که هرکدام یک فیلامان از جنس تنگستن، طلا یا پلاتین هستند که به طور الکتریکی گرم می شوند. گاز حامل خالص از یک محفظه و گاز خارج شده از ستون حاوی نمونه از محفظه دیگر عبور می کنند. حضور مقادیر کم نمونه سبب تغییر هدایت پذیری شده و در نتیجه فیلمان نمونه داغتر ار فیلامان گازحامل می شود و این باعث اختلاف مقاومت و اختلاف جریان بین دو فیلامان می شود. آشکارساز میزان اختلاف جریان بین دو محفظه را ثبت نموده به صورت پیک نشان می دهد. هیدروژن و هلیم تا ده بار هدایت پذیری بیشتری از ترکیبات آلی دارند.
گازهای هلیم و هیدروژن بیشترین اختلاف را ایجاد می کنند و بنابراین حساسیت بیستری دارند. گاز نیتروژن تفاوت کمی در هدایت گرمایی ایجاد می کند بنابراین برای استفاده با این آشکارساز چندان مناسب نیست. از مزایای این آشکارساز عدم تخریب نمونه و پاسخ به تمامی ترکیبات آلی و معدنی ست. در مقایسه با آشکارساز های دیگرحساسیت بالایی ندارند.
آشکارساز الکترون گیرانداز (Electron capture detector, ECD)
در آشکارساز الکترون گیرانداز یا ECD نمونه خروجی از ستون وارد یک سل شیشه ای می شود که اتم های رادیو اکتیو نشر کننده β مانند ۶۳Ni دوپه شده است. الکترون نشر شده از اتم های رادیواکتیو سبب یونیزاسیون گاز حامل شده و در غیاب گونه های آلی یک جریان ثابتی از الکترون ایجاد می شود. در حضور گونه های گیرنده الکترون، این جریان ثابت کاهش می یابد. کاهش جریان متناسب با غلظت گونه های گیرنده الکترون است. از هلیم و هیدروژن به عنوان گاز حامل نمی توان استفاده کرد چون یونیزه نمی شوند. این آشکارساز بسیار گزینش پذیر است و به مولکول های دارای گروه های الکترونگاتیو مانند هالوژن ها، کینون ها، گروه های نیترو و پراکسیدها حساس است اما پاسخی برای گرو های الکل، آمین و هیدروکربنی ندارد. ECD یک آشکارساز مهم و متداول در آنالیز و اندازه گیری حشره کش های کلردار است. از عیوب این آشکارساز گستره خطی کم آن است.
سه آشکارساز FID, TCD و ECD متداول ترین آشکارسازهای مورد استفاده در GC هستند. برحسب موارد خاص آشکارسازهای گزینش پذیر بسیاری معرفی و ساخته شده اند. برخی از آشکارسازهایی که کاربردهای بیشتری داشته و به صورت تجاری در دسترس هستند در جدول ۱ فهرست شده اند.
آشکارساز طیف سنج جرمی (Mass Spectrometry detectors):
آشکارساز طیف سنج جرمی یکی از قوی ترین آشکارسازهای مورد استفاده در GC است که از تلفیقی از روش GC و طیف سنج جرمی است که به اختصار GC-MS نامیده می شود. در طیف سنج جرمی جداسازی یون ها بر اساس نسبت جرم به بار (m/z) آنها و تحت تاثیر میدان های الکتریکی و مغناطیسی صورت می گیرد. در واقع اجزای نمونه پس از جداسازی در ستون کروماتوگرافی و حذف گاز حامل وارد محفظه یونش طیف سنج جرمی می شوند و با استفاده از میدان های الکتریکی و مغناطیسی شناسایی کمی و کیفی اجزاء نمونه براساس m/z صورت می گیرد. در کروماتوگرافی گازی- طیف سنج جرمی (GC-MS) خروجی ستون GC وارد طیف سنج جرمی می شود. بنابراین GC-MS فقط قادر به شناسایی و اندازه گیری ترکیباتی ست که بتوان به GC تزریق کرد یعنی ترکیبات فرار یا ترکیباتی که با مشتق سازی یا حلال های خاص امکان فرار بودن پیدا می کنند.
امروزه دستگاه GC را می توان با دو طیف سنج جرمی متوالی (tandem) تلفیق کرد که این روش تلفیقی GC-MS/MS تکنیک بسیار قوی برای شناسایی اجزاء یک مخلوط است.
آنالیز کمی و کیفی
جهت شناسایی کیفی مواد با GC از زمان بازداری tR استفاده می شود. زمان بازداری زمانی است که طول می کشد تا جسم از آشکارساز خارج شود، یعنی از زمان تزریق نمونه تا زمان ظاهرشدن پیک ها روی دستگاه که برای هر جزئی در نمونه تحت شرایط ثابت، مقداری ثابت است. از مقایسه زمان بازداری نمونه یا جزء معلوم با زمان بازداری نمونه مجهول، می توان اجزای موجود در نمونه مجهول را تشخیص داد. شاخص بازداری کواتس (kovats retention index) نیز یک برای شناسایی ترکیبات مجهول به خصوص الکان ها کاربرد ویژه ای دارد. در واقع کتابخانه های از شاخص های بازداری مواد ایجاد شده اند که با داشتن شاخص بازداری ترکیب مجهول، امکان شناسایی آن فراهم می شود.
اندازه گیری کمی معمولا بر اساس سطح زیر منحنی (Area under curve, AUC) هر پیک انجام می شود. با رسم سطح زیر پیک نمونه های استاندارد برحسب غلظت آنها، و مقایسه سطح یر پیک نمونه مجهول غلظت آن تخمین زده می شود.
نکات آنالیزی
- جداسازی و آنالیز ترکیبات فرار و ترکیباتی که امکان تبدیل شدن به گاز بدون تجزیه شدن را دارند.
- سریع و ساده
- قابلیت اندازه گیری کمی و شناسایی کیفی
- ترکیباتی که نقاط جوش نزدیک به هم دارند و جداسازی آنها به روش تقطیر مقدور نیست توسط GC قابلیت جداسازی و اندازه گیری را دارند.
- امکان جداسازی ترکیبات پیچیده در حداقل زمان
چگونگی تنظیم دما: دمای ستون را چند درجه بالاتر از نقطه جوش دیر جوشترین جزء موجود در نمونه قرار می دهیم و دمای injector را چند درجه بالاتر از ستون و نیز دمای دتکتور نیز چند درجه بالاتر از دمای injector قرار می دهیم.
برنامه دمایی ایزوترمال:
- 70 درجه سانتیگراد = oven
- 90 درجه سانتیگراد = Injector
- 100 درجه سانتیگراد = Detector
- mLit = مقدار تزریق
علت استفاده از استاندارد داخلی: در روش AUC باید از استاندارد داخلی استفاده کنیم که علت استفاده از استاندارد داخلی ، حذف خطای حاصل از حجم تزریق می باشد. زیرا حجم تزریق کم است و احتمال اشتباه زیاد می باشد و برای استفاده کمی و حذف این خطا از یک استاندارد داخلی که از لحاظ ساختمان شیمیایی نزدیک به نمونه باشد استفاده می کنیم مثلا برای تعیین مقدار اتانول ، از بوتانول به عنوان استاندارد داخلی استفاده می کنیم زیرا از لحاظ ساختمان شیمیایی نزدیک به نمونه اتانول است بنابراین ضمن اینکه پیک های مربوط به هر کدام جدا می باشد، خیلی هم از هم فاصله ندارند.
زمینه کاربردی
- فارماکولوژی: آنالیز مواد باقیمانده و حلال ها در محصولات میانی و نهایی، سنجش داروها، اندازه گیری ناخالصی ها و مواد فرار
- کشاورزی و صنایع غذایی: آنالیز باقیمانده سموم ، حشره کش ها، قارچ کش ها و …، آنالیز عطر و اسانس، تشخیص تقلب مواد عذایی (Food adulteration)، پروفایل اسیدهای چرب و ..
- محیط زیست: آنالیز ترکیبات فرار در منابع آبی و پساب ها، آنالیز هوا و مانیتورینگ آلاینده های اتمسفری، باقیمانده سموم و…
- پتروشیمی: آنالیز گازهای پالایشگاه، میعانات گازی و …
- صنایع آرایشی بهداشتی
حتما بخوانید:
⇐ گزارش تجزیه نمونه ها به روش کروماتوگرافی
⇐ آشنایی با دستگاه گاز کروماتوگرافی مایع با عملکرد بالا (HPLC)
دیدگاهتان را بنویسید
می خواهید در گفت و گو شرکت کنید؟خیالتان راحت باشد :)